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The plasmonic nanogap antenna is an efficient radiating or receiving optical device. The resonance behavior of
optical antennas is commonly attributed to the excitation of a localized surface plasmon resonance (LSPR), which
can be theoretically defined as the quasi-normal mode (QNM). To clarify the physical origin of the LSPR, we build
up an analytical model of the LSPR by considering a multiple scattering process of propagative surface plasmon
polaritons (SPPs) on the antenna arms. The model can comprehensively reproduce the complex eigenfrequency
and the field distribution of QNMs of the antenna, unveiling that the LSPR arises from a Fabry–Perot resonance of
SPPs. By further applying the complex pole expansion theorem of meromorphic functions, the field of the antenna
under illumination by a nearby dipole emitter can be analytically expanded with QNMs, which well predicts the
frequency response of the enhancement factor of radiation. The present model establishes explicit relations
between the concepts of the LSPR and the propagative SPP and integrates the advantages of the Fabry–Perot
and QNM formalisms of nanogap antennas. © 2016 Chinese Laser Press

OCIS codes: (240.6680) Surface plasmons; (260.5740) Resonance; (050.6624) Subwavelength structures.
http://dx.doi.org/10.1364/PRJ.4.000293

1. INTRODUCTION
Resonant optical antennas are important devices that can ef-
ficiently accelerate the radiation of emitters such as mole-
cules or quantum dots placed nearby [1–6] or, reciprocally,
allow giant enhancement of the near field under far-field illu-
mination [7–12]. By controlling the geometrical parameters to
fulfill resonance conditions, optical antennas can be widely
used in nonlinear optics [13,14], white light supercontinuum
generation [7], single-emitter fluorescence enhancement [1,3],
and surface enhanced Raman scattering [15–17]. The en-
hancement of field or emission is especially stringent in nano-
gaps formed at the mouth of metal nanoparticles that are
nearly in contact, so that nanogap antennas have many estab-
lished applications ranging from electron tunneling micros-
copy, nanocatalysis, and Raman spectroscopy to disruptive
electronics and light emission [10]. The resonance enhance-
ment is commonly attributed to an excitation of localized
surface plasmon resonance (LSPR) as the illumination fre-
quency matches the eigenfrequency of the LSPR [12,18–21].

For the nanogap antenna composed of two strongly coupled
individual nanowires, the LSPR is classified into bonding and
antibonding modes with opposite field symmetries [18,19].
Theoretically, the LSPR can be defined as the quasi-normal
mode (QNM) by treating the metallic nanoantenna as an open
cavity [21]. The QNM is a solution of source-free Maxwell’s

equations with an eigenfrequency of complex value due to
the cavity loss [22]. The formalism of QNMs is a powerful tool
able to provide an analytical description of the frequency
response of open or lossy resonators [18–23] and shows great
advantages over standard full-wave solvers that repeat the en-
tire calculation for different frequencies [12]. However, pres-
ently the QNMs of antennas are commonly obtained via full-
wave numerical calculations [20,21,24–29]. Too few reports
provide a comprehensive analytical description of QNMs (for
instance, for some special cavities such as one-dimensional
cavities andmicrospheres [30,31], the eigenfrequency and field
of the QNM are analytical), which blocks a further understand-
ing of the physical origin of QNMs and thus an efficient design
of antenna devices.

To achieve a physical understanding of the resonance
behaviors of nanoantennas, different theoretical approaches
have been reported. In the lumped-elements circuit model,
the antenna is treated as a circuit composed of resistors, in-
ductors, and capacitors, so that the resonance is intuitively
understood as the resonance of the AC current in the circuit
[32,33]. The temporal coupled-mode theory is established by
considering the coupling between the eigenmodes and the in-
put and output ports of the resonator, and it can be readily
used for analyzing the Fano or Lorentzian line shape of the
frequency response of antenna arrays [34,35]. However, in
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these theories, surface plasmon polaritons (SPPs) do not
appear in an explicit form. The SPP can be defined as a
waveguide mode that propagates along a metal–dielectric in-
terface [36–39] and is conceptually different from the LSPR. A
counterexample can be found for the analysis of metallic-
sphere dimmers by showing how SPPs propagate at the metal
surface and are slowed down at the dimmer mouth to build a
hot spot [40]. SPP Fabry–Perot models have been developed
for antennas composed of a single wire, in which SPPs are
bouncing back and forth between the arm facets that act
as mirrors [41–44]. Recently, the Fabry–Perot model has been
extended to nanogap antennas with two arms by including the
SPP hopping from one arm to the other and the SPP reflection
at the gap [5,11]. The extended model, which relies on the
ab initio calculation of a few elementary SPP scattering co-
efficients, has been shown to comprehensively and accurately
reproduce many antenna characteristics, for example, scatter-
ing cross section, near-field enhancement factor, Purcell
factor, and far-field radiation pattern. However, since the ex-
citation and scattering processes of SPPs depend on the illu-
mination frequency in an implicit way, the Fabry–Perot model
cannot provide an analytical description of the frequency
response of the antenna.

In this paper, we combine the Fabry–Perot and QNM for-
malisms, capitalizing on the intuitive force of the former
and the frequency-analyticity of the latter, to propose an in-
sightful and effective theoretical treatment of nanogap anten-
nas. For that purpose, we build up an SPP Fabry–Perot model
for the QNM of nanogap antennas by considering a multiple
scattering process of SPPs on the antenna arms. The existence
of slightly damped QNMs that cause the resonance nature of
nanogap antennas is demonstrated with the model by seeking
the solutions of two transcendental equations. The model sets
a solid electromagnetic foundation for the intuitive picture
that the LSPR (i.e., QNM) of the antenna actually arises from
the Fabry–Perot resonance of SPPs at the complex eigenfre-
quency. With a few assumptions on the frequency dependence
of the field and with the use of complex pole expansion of
meromorphic functions (Mittag–Leffler theorem), the field
of the nanogap antenna excited by a nearby point emitter
can be expanded upon the basis of QNMs, thus providing
an analytical description of the frequency response of the
field. For calculating the Purcell factor, the model provides
a new analytical expression of the mode volume of QNM in
terms of the SPP scattering coefficients, which avoids the dif-
ficulty in calculating the mode volume caused by the diver-
gence of the QNM field at infinity that was overcome
recently [20]. The present model establishes explicit relations
between the concepts of the LSPR and the propagative SPP,
and it integrates the advantages of the Fabry–Perot and QNM
formalisms in understanding the resonance of nanogap anten-
nas, which may inspire new design strategies of antenna
devices with different geometries [1,45–50].

2. SPP MODEL OF LSPR FOR NANOGAP
ANTENNAS
As shown in Fig. 1(a), the considered nanogap antenna is
formed by two arms of gold nanowires (with length L) sepa-
rated by a nanogap (with width w � 0.03 μm). The nanowires
have a square cross section with a side length D � 0.04 μm.
The antenna is surrounded by air (refractive index na � 1)

without a substrate for simplicity. For solving QNMs at com-
plex frequencies, the gold permittivity at complex frequencies
is obtained through an analytical continuation by using an
analytical expression obtained with a polynomial fitting of
the experimental data of the gold permittivity at real frequen-
cies [51]. Next we will try to derive analytical expressions for
the field and the eigenfrequency of the QNMs based on a
multiple scattering formalism of SPPs [5]. Since the transver-
sal size of the antenna arms is much smaller than the wave-
length, only one fundamental SPP mode is propagative and
bounded on the antenna arms that are treated as x-invariant
waveguides [36,37]. All other waveguide modes on antenna
arms are either evanescent or unbounded and thus are ne-
glected in the model. In view of the multiple scattering proc-
esses of SPPs as sketched in Fig. 1(a), the field of QNM of the
antenna can be expressed as

ΨQNM � a1uΨL;s
SPP;− � a2uΨR;s

SPP;� � b1uΨG;s
SPP;� � b2uΨG;s

SPP;−;

(1)

where Ψ � �E;H� denotes both the electric- and the magnetic-

field vectors. ΨG;s
SPP;� [Fig. 1(b)] and ΨR;s

SPP;� [Fig. 1(c)] denote
the fields scattered at the nanogap and at the right termination
of the antenna for an incident right-going SPP, respectively.

ΨG;s
SPP;− and ΨL;s

SPP;− are defined similarly for an incident left-
going SPP. u � exp�ik0;cneffL� is the phase shift of the SPP
accumulated over one antenna arm (k0;c � ωc∕c, ωc being
the complex angular frequency of the QNM, c being the light
speed in vacuum, and neff being the complex effective index
of the SPP). Equation (1) is written with the view that the field
of the QNM contains four parts: the two fields scattered at the
two terminations for incident SPPs propagating away from the
gap (with coefficients a1 and a2 and a damping u) and the two
fields scattered at the nanogap for incident SPPs propagating
toward the gap (with coefficients b1 and b2 and a damping u).

The scattered fields (ΨG;s
SPP;�, Ψ

R;s
SPP;�, Ψ

G;s
SPP;−, and ΨL;s

SPP;−) and
neff can be calculated independently with the full-wave aperi-
odic Fourier modal method (a-FMM) [5,52,53]. The efficiency
and accuracy of the a-FMM compared with other full-wave

Fig. 1. (a) Sketch of the nanogap antenna. The antenna is composed
of two gold nanowire arms of length L (with a square cross section of
side length D � 40 nm) separated by a nanogap (gap width
w � 30 nm). a1, a2, b1, and b2 are the complex amplitude coefficients
of SPPs at the complex eigenfrequency of QNMs. (b) and (c) defini-
tions of SPP scattering coefficients ρ, τ, and r and scattered fields
ΨG;s

SPP;� and ΨR;s
SPP;� used in the model.
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solvers of Maxwell’s equations such as the finite element
method or finite difference time domain method has been con-
firmed [54]. In Eq. (1), the unknown amplitude coefficients a1,
a2, b1, and b2 of SPPs [Fig. 1(a)] can be determined by solving
a set of coupled SPP equations:

a1 � b1uρ� b2uτ; (2a)

a2 � b1uτ� b2uρ; (2b)

b1 � a1ur; (2c)

b2 � a2ur; (2d)

where ρ and τ denote the SPP reflection and transmission
coefficients at the nanogap [38] [Fig. 1(b)], and r is the SPP re-
flection coefficient at the antenna termination [39] [Fig. 1(c)].
Here ρ, τ, and r are calculated in a rigorous manner as the scat-
tering matrix elements [5,55] with the full-wave a-FMM [52,53]
without relying on any assumption or any fitting of rigorous
data, which ensures a solid electromagnetic foundation of
the presentmodel. Equations (2) can be understood intuitively.
For the first equation, for instance, the coefficient a1 results
from two contributions: the first contribution from the reflec-
tion (ρ) of an incident right-going SPP (with coefficient b1 and
damping u) on the left arm, and the second contribution from
the transmission (τ) of an incident left-going SPP on the right
arm (with coefficient b2 and damping u). Note that no excita-
tion terms appear in Eqs. (2), since the QNM is the eigensolu-
tion ofMaxwell’s equationswithout source. Equations (2) form
a set of homogeneous linear equations of a1, a2, b1, and b2. To
ensure the existence of nontrivial solutions of Eqs. (2), the de-
terminant of the coefficientmatrix should be zero,which yields

u2r�ρ� τ� � 1; (3a)

u2r�ρ − τ� � 1: (3b)

Equations (3) form two transcendental equations for determin-
ing the complex eigenfrequencies of QNMs. Since ρ, τ, and r
are independent of the antenna arm length L and u �
exp�ik0;cneffL� depends on L analytically, Eqs. (3) could be
more computationally efficient in solving the QNM eigenfre-
quencies than full-wave calculations, especially for large val-
ues of L. With Eqs. (3a) or (3b) inserted into Eqs. (2), we can
obtain the SPP coefficients a1 � a2, b1 � b2, or a1 � −a2,
b1 � −b2, respectively. The two solutions correspond to
QNMswithdifferent symmetries of field, termedas the bonding
mode and antibondingmode, respectively [18,19].With the two
solutions inserted into Eq. (1), we finally obtain the analytical
expressions for the field distribution of the bonding and anti-
bonding QNMs (with normalization a1 � u−1):

Ψb
QNM � ΨL;s

SPP;− �ΨR;s
SPP;� � urΨG;s

SPP;� � urΨG;s
SPP;−; (4a)

Ψa
QNM � ΨL;s

SPP;− −ΨR;s
SPP;� � urΨG;s

SPP;� − urΨG;s
SPP;−: (4b)

Equations (4) can be further simplified at some specific posi-
tions such as in the nanogap or near the antenna terminations,

and details can be found in Appendix D. To seek the solution,
Eqs. (2) can be rewritten as

k0;c � −

ln�jrjjρ� τj� � i�arg�r� � arg�ρ� τ� − 2Mπ�
i2neffL

; (5a)

k0;c � −

ln�jrjjρ − τj� � i�arg�r� � arg�ρ − τ� − 2Nπ�
i2neffL

; (5b)

whereM andN are integers that correspond to different orders
of QNMs, and arg�� denotes the argument. In view of the propa-
gative nature of the SPPmode,neff is approximately a real num-
ber, so that Im�k0;c� ≈ ln�jrjjρ� τj�∕�2neffL�. It has been shown
that jrj ≈ 1 for the SPP reflection at the antenna termination
[39], and jρ� τj ≈ 1 for the SPP transmission and reflection
at the nanogap due to energy conservation [38]. Thus we have
Im�k0;c� ≈ 0, implying the existence of slightly damped QNMs
that cause the resonance nature of the nanogap antenna. In
fact, a crude evaluation of k0;c can be obtained by calculating
the right side of Eqs. (5) [denoted by g�k0;c�] at a certain fre-
quency, in view that ρ, τ, r, neff , and thus g�k0;c� are slowly vary-
ing functions of k0;c. The accuracy of this evaluation can be
further improved with the iteration formula km0;c � g�km−1

0;c �
[11]. To seek the solution of Eqs. (5) in a rigorous manner,
we can solve the nonlinear equation f �k0;c� � k0;c − g�k0;c� �
0 with classical numerical techniques such as the linear inter-
polation method [56]. By setting two initial values k00;c and k10;c
and approximating f �k0;c� as a linear form f �k0;c� � p� qk0;c, a
sequence of km0;c can be obtained by solving p� qkm0;c � 0,
which approaches the exact solution rapidly as m increases.
Equations (5) are superior to Eqs. (3) for seeking solutions
since for designated integers M or N , the solution of
Eqs. (5) is commonly unique and thus not sensitive to the initial
values k00;c and k10;c. While Eqs. (3) have an infinite number of
solutions, so that the solved eigenfrequency is the one closest
to the initial values. Taking the real part of both sides of Eqs. (5)
after multiplying by 2neffL, we obtain

2Re�k0;cneff�L� arg�r� � arg�ρ� τ� � 2Mπ; (6a)

2Re�k0;cneff�L� arg�r� � arg�ρ − τ� � 2Nπ: (6b)

Equations (6) show that at the complex eigenfrequency ωc of
QNMs, the phase shift of SPPs that propagate back and forth
over one roundon the antenna ismultiples of 2π, indicating that
the QNM (i.e., LSPR) originates from a Fabry–Perot resonance
of SPPs at the eigenfrequency.

Now we check the validity of the model through a compari-
son to the full-wave numerical data. We first reproduce the
eigenfrequency ωc of the QNM of the antenna by solving
Eqs. (5), as shown in Table 1 for antenna lengths L � 0.2
and 0.6 μm. For solving the QNM with the full-wave a-
FMM, a point emitter with complex frequency is placed in
the vicinity of the antenna. In view of the divergence of the
excited field F�ω� as the emitter frequency ω approaches
the eigenfrequency of QNMs, the QNMs can be obtained by
solving a nonlinear equation 1∕F�ω� � 0 (with the linear inter-
polation method) [11,56]. The solution of 1∕F�ω� � 0 is com-
monly not unique and depends sensitively on the initial value,
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which causes difficulty in finding all QNMs within the wave-
length range of interest. However, as mentioned earlier, this
difficulty can be largely overcome by solving Eqs. (5) of the
model due to their uniqueness of solution. It is seen that the
eigenfrequencies obtained with the model agree well with
the full-wave a-FMM results. Only for the M � 1 order
QNM does the predicted eigenfrequency slightly deviate from
the a-FMM result (especially the imaginary part), which is due
to the impact of surface waves other than SPPs that are ne-
glected in the model (see Appendix A for details).

Then we will reproduce the field of QNMs with Eqs. (4) of
the model. The results for QNMs of different orders with an-
tenna length L � 0.6 μm are shown in Fig. 2 (obtained in plane

y � 0). Note that the fields of QNMs calculated with the
a-FMM are normalized by setting the left-going SPP coefficient
on the left arm to be u−1, which is consistent with the QNM
normalization in Eqs. (4) of the model. The QNM field distri-
butions predicted by the model (right column) agree well with
the full-wave results (left column). This is true even for the
M � 1 order QNM, for which the model cannot predict the
eigenfrequency as accurate (Table 1), and the reason lies in
the consistent normalization of the QNM field for the model
and for the a-FMM. In Figs. 2(a)–2(f), the first two parts show
the distributions of Re�Ex� for M � 1, 2, 3 and N � 1, 2, 3
orders of QNMs, exhibiting different field symmetries of the
bonding and antibonding modes as indicated earlier with
Eqs. (4). Other parts of Fig. 2 show the distributions of the

electric field amplitude (jEj �
���������������������������������������������
jExj2 � jEyj2 � jEzj2

q
). It is

seen that for the bonding modes (M � 1, 2, …), the field in
the nanogap is very strong, but the field in the gap is nearly
zero for the antibonding modes (N � 1, 2, …). The number of
field nodes on the antenna arms increases with the increase of
the resonance order M or N , which is due to an interference
of the two counterpropagating SPPs on each arm of the
antenna. The field of QNMs for antenna length L � 0.2 μm
is provided in Appendix B.

3. REPRODUCING ENHANCEMENT FACTOR
OF RADIATION WITH THE MODEL
In previous theories that treat the antenna arms as microcav-
ities of SPPs [5,41,43], the enhancement of the radiation from
a dipole emitter in the vicinity of the antenna is attributed to a
Fabry–Perot resonance of SPPs. Another interpretation of the
radiation enhancement is based on a resonant excitation of
the LSPR (i.e., QNM) [18–21]. In this section, we will apply
the SPP model of the LSPR established in Section 2 to repro-
duce the enhancement factor of the radiation of the nanogap
antenna, thus establishing explicit relations between the two
interpretations.

A. Radiation Enhancement for an Emitter Located in
the Nanogap
We first consider the case that an x-polarized electric dipole
source (with a current density expressed with Dirac function
J � δ�x; y; z�x, x being a unit vector along the x direction) is
located at the center of the gap of the antenna, as sketched in
Fig. 3(a). The dipole source is used to represent a molecule
[1–3] or a quantum dot [4,6] in practical situations. The en-
hancement factor F � Γtot∕Γair is used to characterize the
acceleration of the spontaneous emission/decay rate of a di-
pole emitter in the vicinity of nanostructures [57], where Γtot

and Γair represent the spontaneous emission rates with and
without the presence of nanostructures, respectively. For
the present case, Γtot can be calculated with the field at the
source position, Γtot � −Re�Ex�r0��∕2 (r0 being the coordinate
of the source), and Γair � ηvack20na∕�12π� (k0 � ω∕c, na � 1
being the refractive index of air, and ηvac being the wave
impedance in vacuum). The Purcell factor, which denotes
the highest acceleration of the spontaneous emission/decay
rate when changing the frequency, the position, and the polari-
zation of the emitter, is required to achieve high values for
applications such as high-speed quantum information
processing [58] and fluorescence sensing of molecules [59].

Table 1. Complex Eigenfrequencies ωc
(λc � 2πc∕ωc) of QNMs

L (μm) M or N λc (SPP model) λc (a−FMM)

0.2
M � 1 0.9776� 0.0574i 0.9635� 0.0925i
N � 1 0.8068� 0.0226i 0.8089� 0.0233i

0.6

M � 1 2.4262� 0.1789i 2.3928� 0.2823i
N � 1 1.9468� 0.0921i 1.9525� 0.0976i
M � 2 1.0830� 0.0427i 1.0920� 0.0455i
N � 2 0.9782� 0.0260i 0.9783� 0.0251i
M � 3 0.7707� 0.0166i 0.7716� 0.0159i
N � 3 0.7410� 0.0141i 0.7410� 0.0141i
M � 4 0.6638� 0.0115i 0.6636� 0.0117i
N � 4 0.6522� 0.0103i 0.6522� 0.0103i

Fig. 2. Field distributions of QNMs for antenna arm length
L � 0.6 μm. The left and right columns show the results obtained
with the full-wave a-FMM and with the SPP model, respectively.
(a)–(c) show the bonding QNMs for M � 1, 2, 3, respectively, where

the electric-field amplitude is defined as jEj �
���������������������������������������������
jExj2 � jEyj2 � jEzj2

q
.

(d)–(f) show the antibonding QNMs for N � 1, 2, 3, respectively.
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To obtain the field under the excitation of the dipole emitter,
we use c1, c2, d1, and d2 to denote the amplitude coefficients of
SPPs that propagate back and forth on the antenna arms, as
sketched in Fig. 3(a). To solve the unknown SPP coefficients,
a set of coupled-mode equations can be written [5]:

c1 � β� d1uρ� d2uτ; (7a)

c2 � β� d2uρ� d1uτ; (7b)

d1 � c1ur; (7c)

d2 � c2ur; (7d)

where β denotes the excitation coefficient of SPPs by the
dipole source [Fig. 3(b)], which can be calculated as the scat-
tering-matrix element [5,53,55] orwith the Lorentzian reciproc-
ity relation by sending an incident SPP [see Eq. (C5) in
Appendix C]. Other scattering coefficients (ρ, τ, and r) have
been defined earlier in Fig. 1. Equations (7) can be understood
in a way similar to Eqs. (2). They can be analytically solved as

c1 � c2 �
β

1 − u2r�ρ� τ� ; (8a)

d1 � d2 �
βur

1 − u2r�ρ� τ� : (8b)

Then the field excited by the emitter can be expressed as [5]

Ψ�ΨG
Source�c1uΨL;s

SPP;−�c2uΨR;s
SPP;��d1uΨG;s

SPP;��d2uΨG;s
SPP;−;

(9)

whereΨG
Source denotes the field excited by the point source for

an infinitely long nanowire with a nanogap [see Fig. 3(b)], and

other terms (ΨG;s
SPP�, Ψ

G;s
SPP−, ΨR;s

SPP� and ΨL;s
SPP−) are defined

earlier in Fig. 1. Equation (9) iswritten similar toEq. (1), except
for the first term representing the source excitation. Note that
all the quantities on the right side of Eq. (9) depend on the il-
lumination frequency (taking real values) in an implicit form.
To seek the frequency response in an analytical form, next we
consider to expand the excited field expressed with Eq. (9)
upon the basis of QNMs [20,60,61]. Equations (3) and (8) show
that as the illumination frequency ω approaches the complex
eigenfrequencyωc of QNMs, the SPP coefficients c1, c2, d1, and
d2 approach infinity, and resultantly, the excited field Ψ in
Eq. (9) diverges to infinity. Then we assume that Ψ is a mero-
morphic function of ω, with the ωc being the first-order pole of
Ψ, and thatΨ is bounded as jωj → ∞ in the complex plane. This
assumption has been shown to be valid for the field inside or
near nanogrooves [62] and will be shown to be valid for the
present case of nanogap antennas. According to the complex
pole expansion of meromorphic functions (Mittag–Leffler
theorem) [62–64], the field Ψ can be expressed analytically
with respect to ω:

Ψ�ω� � Ψ�0� �
X
n

ω∕ωc;n

ω − ωc;n
pn; (10)

whereωc;n denotes the eigenfrequencyof thenth orderQNM [n
can be M or N in Eqs. (5)]. The term Ψ�0� ≈ 0 in view that
at ω � 0 the scattering effect of the finite-size antenna
vanishes for an infinitely-large wavelength. pn � limω→ωc;n

�ω −

ωc;n�Ψ�ω� is the residue ofΨ at the poleωc;n. Note that the way
of deriving the expansion of Eq. (10) is essentially different
from previous methods (such as the Lorentzian reciprocity
theorem [20] and the two component expansion method
[60,61]) that depend on the assumption of the completeness
of QNMs. With Eqs. (8) and (9), we obtain

pn � lim
ω→ωc;n

βu�ω − ωc;n�
1 − u2r�ρ� τ�

× �ΨL;s
SPP;− �ΨR;s

SPP;� � urΨG;s
SPP;� � urΨG;s

SPP;−�; (11)

where limω→ωc;n
�ω − ωc;n�ΨG

Source�ω� is zero sinceΨG
Source�ω� is a

nonresonant term. The summation in the last bracket in
Eq. (11) is nothing else than the field of the bonding QNM ex-
pressedwith Eq. (4a), showing that for the emitter at the center
of the nanogap, only the bonding QNMs are excited (i.e.,
n � M). The limit in Eq. (11) (with n � M) is the type of 0/0
and can be calculated with L’Hospital’s rule,

lim
ω→ωc;M

βu�ω − ωc;M �
1 − u2r�ρ� τ�

� �βu�ω�ωc;Mh
−

4πiωneffL
c

�
1
ω � 1

neff

∂neff
∂ω

�
−

1
r
∂r
∂ω −

1
ρ�τ

∂�ρ�τ�
∂ω

i
ω�ωc;M

: (12)

With Eqs. (10)–(12), we finally obtain

Ψ�ω� �
X
M

ηM�ω�Ψb
QNM;M ; (13)

Fig. 3. (a) Definitions of the amplitude coefficients (c1, c2, d1, and d2)
of SPPs excited by an x-polarized electric point source located at the
center of the nanogap. (b) Definitions of the SPP excitation coefficient
β and scattered field used in the model. (c) Enhancement factor F of
radiation plotted as a function of illumination frequency ω∕�2πc�.
Results are obtained with the full-wave a-FMM (blue circles) and
the SPP model (red solid curve) for antenna length L � 0.6 μm.
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where Ψb
QNM;M is the field of the Mth-order bonding QNM at

eigenfrequencyωc;M [expressedwithEq. (4a)], and ηM is a com-
plex expansion coefficient expressed as

ηM�ω� �
ω∕ωc;M

ω−ωc;M

×
�βu�ω�ωc;Mh

−

4πiωneffL
c

�
1
ω� 1

neff

∂neff
∂ω

�
−

1
r
∂r
∂ω−

1
ρ�τ

∂�ρ�τ�
∂ω

i
ω�ωc;M

: (14)

Equation (14) shows that the expansion coefficients of
QNMs can be analytically expressed with the SPP scattering
coefficients at the eigenfrequency ωc;M . Note that the
scattering coefficients (β, r, ρ, τ) and the complex effective in-
dex (neff ) of the SPP are calculated at the eigenfrequency (with
the full-wave a-FMM), so that they are independent of the illu-
mination frequency ω. Also note that when changing the posi-
tion and polarization of the point emitter, in Eqs. (13) and (14)
only the SPP excitation coefficient β changes and all other
parameters do not change. And with the use of reciprocity
theorem, β for different emitter positions and polarizations
can be obtained with only one full-wave calculation [see
Eq. (C5) in Appendix C]. This virtue with the use of reciprocity
is analogous to that with the use of reciprocity between a
point emitter and QNMs [20]. Equations (13) and (14) provide
an analytical description of the frequency response of
nanogap antennas along with an intuitive multiple scattering
picture of SPPs. The selection of the QNMs in the expansion
of Eq. (13) is determined by the frequency range of interests.

For the case that the antenna resonance is dominated by a
single QNM, the Purcell factor can be expressed as [20]
FP � 3�4π2�−1�λ0∕na�3 Re�Q∕V�, where λ0 is the vacuum
wavelength at resonance, na is the refractive index of environ-
ment (na � 1 in air), and Q � −Re�ωc�∕�2Im�ωc�� and V are
the quality factor and the complex-valued mode volume of
the dominant QNM, respectively. With Eq. (14), the mode
volume V can be expressed analytically with the SPP scatter-
ing coefficients (a detailed derivation can be found in
Appendix C). This avoids the difficulty caused by the diver-
gence of the QNM field at infinity when calculating the mode
volume as an integral of the QNM field over the whole space.
This difficulty has been recently overcome by introducing per-
fectly matched layers to treat the divergence of the QNM field
at infinity [20].

Now we check the validity of the model in predicting the
enhancement factor F of radiation. The results obtained with
the full-wave a-FMM and with the model [Eqs. (13) and (14)]
are shown in Fig. 3(c) with blue circles and red solid curves,
respectively, with antenna length L � 0.6 μm. It is seen that
the model predictions agree well with the a-FMM data except
for an observable deviation at the resonance corresponding to
the M � 1 order QNM, which is due to the impact of surface
waves other than SPPs (see Appendix A for details). As shown
explicitly by Eqs. (13) and (14), the enhancement factor F of
emission peaks at ω � Re�ωc;M �, which is confirmed by the
results in Fig. 3(c). In view of ωc;M ≈ Re�ωc;M �, since
Im�ωc;M � is a small number (as shown in Table 1), Eq. (6a)
at ω � ωc;M then approximately becomes 2k0 Re�neff�L�
arg�r� � arg�ρ� τ� � 2Mπ at ω � Re�ωc;M �. The latter is
the already derived phase-matching condition for predicting
resonance [5] and is related to a resonant excitation

(i.e., constructive interference) of SPPs at real frequencies.
In this sense, the resonant excitation of QNMs and that of
SPPs for explaining the enhanced radiation are logically uni-
fied. For design tasks, this phase-matching condition provides
an analytical expression to determine the antenna arm length
L if the real resonance frequency Re�ωc;M � is prescribed.

B. Radiation Enhancement for an Emitter Located Near
the Antenna Termination
As has been shown in Section 3.A, the antibonding modes do
not contribute to the radiation of the emitter located in the
nanogap. This can be also understood with the reciprocity be-
tween the source and the QNM [20] in view that the electric
field of antibonding QNMs in the nanogap is nearly zero. To
excite both the bonding and the antibonding modes, we place
an x-polarized point emitter near one termination of the an-
tenna, as shown in Fig. 4(a), where the distance between
the emitter and the antenna termination is 15 nm.The unknown
complex amplitude coefficients of SPPs are denoted by e1, e2,
f 1, and f 2. They satisfy a set of coupled-mode equations,

f 1 � e1ur; (15a)

f 2 � α� e2ur; (15b)

e1 � f 1uρ� f 2uτ; (15c)

e2 � f 2uρ� f 1uτ; (15d)

where α denotes the excitation coefficient of the SPP by the
emitter [43] [see Fig. 4(b)] and can be calculated as the

Fig. 4. (a) Definitions of the amplitude coefficients (e1, e2, f 1, and f 2)
of SPPs excited by an x-polarized electric point source located near
the antenna termination (with a distance of 15 nm). (b) Definitions of
the SPP excitation coefficient α and scattered fieldΨT

Source used in the
model. (c) Enhancement factor F of radiation plotted as a function of
illumination frequency ω∕�2πc�. Results are obtained with the
full-wave a-FMM (blue circles) and the SPP model (red-solid curve),
with antenna length L � 0.6 μm.
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scattering-matrix element [5,55] or with the Lorentzian
reciprocity theorem [see Eqs. (C9) in Appendix C]. To solve
Eqs. (15), we reformulate the unknown coefficients as
e1 � e2 � 2e�, e1 − e2 � 2e

−

, f 1 � f 2 � 2f�, and f 1 − f 2 �
2f

−

, and the analytical solution can be obtained,

e� � αu�ρ� τ�∕2
1 − u2r�ρ� τ� ; (16a)

e
−

� −

αu�ρ − τ�∕2
1 − u2r�ρ − τ� ; (16b)

f� � α∕2
1 − u2r�ρ� τ� ; (16c)

f
−

� −

α∕2
1 − u2r�ρ − τ� : (16d)

Then the excited field of the antenna can be expressed as

Ψ�ΨT
Source� e1uΨL;s

SPP;−� e2uΨR;s
SPP;�� f 1uΨG;s

SPP;�� f 2uΨG;s
SPP;−:

(17)

Equation (17) is written in a way similar to Eq. (1), except for
the first term representing the source excitation [as sketched in
Fig. 4(b)]. Inserting Eqs. (16) into Eq. (17), we obtain

Ψ � ΨT
Source �

α∕�2r�
1 − u2r�ρ� τ� �u

2r�ρ� τ�ΨL;s
SPP;−

� u2r�ρ� τ�ΨR;s
SPP;� � urΨG;s

SPP;� � urΨG;s
SPP;−�

� −α∕�2r�
1 − u2r�ρ − τ� �u

2r�ρ − τ�ΨL;s
SPP;−

− u2r�ρ − τ�ΨR;s
SPP;� � urΨG;s

SPP;� − urΨG;s
SPP;−�: (18)

Then applying the complex pole expansion of meromorphic
functions to Eq. (18) [with the use of Eqs. (3) and (4) for
QNMs, as has been done for deriving Eqs. (13) and (14)], we
finally obtain

Ψ�ω� �
X
M

ξM �ω�Ψb
QNM;M �

X
N

ζN�ω�Ψa
QNM;N ; (19)

where ξM and ζN are complex expansion coefficients for the
bonding (Ψb

QNM;M ) and antibonding QNMs (Ψa
QNM;N), respec-

tively, and are expressed as

ξM �ω��
ω∕ωc;M

ω−ωc;M

×
�α∕2r�ω�ωc;Mh

−

4πiωneffL
c

�
1
ω� 1

neff

∂neff
∂ω

�
−

1
r
∂r
∂ω−

1
ρ�τ

∂�ρ�τ�
∂ω

i
ω�ωc;M

; (20a)

ζN �ω��
ω∕ωc;N

ω−ωc;N

×
�α∕2r�ω�ωc;Nh

4πiωneffL
c

�
1
ω� 1

neff

∂neff
∂ω

�
� 1

r
∂r
∂ω� 1

ρ−τ
∂�ρ−τ�
∂ω

i
ω�ωc;N

: (20b)

Equation (19) shows that for an emitter located near the termi-
nation of the antenna, both the bonding and the antibonding
QNMs contribute to the radiation [18,19]. Similar to the calcu-
lation of β in Eq. (14), with the use of reciprocity, α in Eqs. (20)
for different emitter positions and polarizations can be
obtained with only one full-wave calculation [see Eq. (C9) in
Appendix C].

To check the validity of the SPP model, we plot the en-
hancement factor F as a function of frequency in Fig. 4(c).
The results are obtained with the full-wave a-FMM (blue
circles) and with Eqs. (19) and (20) of the model (red solid
curves) for antenna length L � 0.6 μm. Good agreement
can be seen in the figure, except for a deviation at the
resonance corresponding to the M � 1 order QNM, which
is due to the impact of surface waves other than SPPs (see
Appendix A). Similar to the analysis in Section 3.A, Eqs. (19)
and (20) show that the enhancement factor F peaks at
ω � Re�ωc;M � and ω � Re�ωc;N �, corresponding to the excita-
tion of bonding and antibonding QNMs, respectively.

4. CONCLUSION
We build up an analytical model for the LSPR (i.e., QNM) of
nanogap antennas by considering the multiple-scattering
processes of SPPs that propagate back and forth on the an-
tenna arms. The model integrates the advantages of the
QNM approach and the Fabry–Perot model of SPPs and log-
ically unifies the interpretations of the resonance behaviors of
nanogap antennas with the two approaches. The existence of
slightly damped QNMs for nanogap antennas is demonstrated
with the model by seeking the solutions of two transcendental
equations with the complex frequency as the unknown. The
latter can be sometimes more computationally efficient than
full-wave solvers of QNMs due to their uniqueness of solutions
and analyticity with respect to the antenna arm length. The
model demonstrates the fact that the QNM originates from
a Fabry–Perot resonance of SPPs at the complex eigenfre-
quency. The bonding and the antibonding QNMs that possess
different symmetries of field are explicitly discriminated with
different analytical expressions. The predicted eigenfre-
quency slightly deviates from the full-wave a-FMM results
for the lowest-order bonding QNM, unveiling the impact of
surface waves other than SPPs to the antenna resonance.

With the assumption that the field of the antenna is a mero-
morphic function of frequency and by using the complex pole
expansion theorem (Mittag–Leffler theorem), the field of the
antenna under excitation by a nearby point emitter can be ex-
panded with QNMs. With the model, the expansion coeffi-
cients and the mode volume of QNMs for calculating the
Purcell factor are analytically expressed with the scattering
coefficients of the SPP mode at the complex eigenfrequency
of QNMs. The enhancement factor of radiation is shown to
peak when the illumination frequency matches the real part
of the complex eigenfrequency of QNMs, which is shown
to be equivalent to a phase-matching condition that represents
the Fabry–Perot resonance of SPPs. The present analysis of
the LSPR with the SPP model establishes explicit relations be-
tween the concepts of LSPR and propagative SPP. The
method can be extended to the analysis of other antenna
structures, such as antennas with circular cross section
[37,39], L-shaped antennas [48], cross antennas [45], split ring
antennas [46,47], or antenna arrays [1]. For antennas with
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arms of varying cross section such as bowtie antennas [49] or
diabolo antennas [50], it could be possible to extend the
present model by defining a SPP mode that propagates along
the antenna arms adiabatically if the variation of the cross
section is slow enough.

APPENDIX A: CALCULATION OF THE
RESIDUAL FIELD AND ITS IMPACT ON THE
ANTENNA RESONANCE
In the SPP model of LSPR, only the fundamental SPP mode is
considered, and all other waves (composed of evanescent or
unbounded waveguide modes) on the antenna arms are ne-
glected. This is the reason why the model predictions of
the eigenfrequencies of the M � 1 order QNM (Table 1) and
of the enhancement factor of radiation in Figs. 3(c) and 4(c) at
resonance corresponding to the M � 1 order QNM deviate
from the full-wave a-FMM results. Here we provide the
numerical data of the residual field on the antenna arms
for different orders of QNMs and for the case that the antenna
is illuminated by a point emitter. The residual field can be
obtained by removing the SPP field from the total field.

For the QNM, the SPP field on the left arm of the antenna
can be expressed as

ΨSPP � aΨSPP;− � bΨSPP;�; (A1)

whereΨSPP;� denotes the fields of SPPs propagating along the
positive and negative x directions and can be calculated with
the a-FMM [5,52,53]. a and b can be extracted from the total
field with the mode orthogonality theorem [36] or can be cal-
culated with the a-FMM as the scattering matrix elements [55].
The residual field on the right arm of the antenna can be
obtained in a similar way. The results for antenna length L �
0.6 μm are shown in Fig. 5. It is seen that for the M � 1 order
QNM, the residual field is comparable with the SPP field, so
that the eigenfrequency predicted with the model deviates
from the full-wave a-FMM results (see Table 1). For other or-
ders of QNMs, the residual field is weak compared with the
SPP field, so that the eigenfrequency predicted with the model
is accurate. However, the field distribution of QNMs repro-
duced with the model agrees well with the a-FMM results even
for the M � 1 order QNM. The reason is that we adopt the

normalization of a � 1∕u for the QNM field obtained with
the a-FMM, which is consistent with the normalization of the
QNM field obtained with the model [see Eqs. (4) in Section 2].
The residual field of the antenna is an analogue of the quasi-
cylindrical wave on the flat metallic interface [65]. The latter
has been shown to decay much faster than the SPP wave with
the increase of the propagation distance, thus imposing a
weaker impact on the electromagnetic interaction between
scatterers with larger separation distance. Similarly, the rela-
tive ratio L∕Re�λc� is larger for QNMs of higher orders (see the
values of λc in Table 1), implying a weaker impact of the
residual field on the antenna resonance (and resultingly, a
higher accuracy of the SPP model).

For the case that the antenna is illuminated by a dipole
source, the residual field on the antenna arms can be calcu-
lated similarly to Eq. (A1). The numerical results are shown in
Fig. 6, where Fig. 6(a) is for the case that the source is located
at the gap center (corresponding to Fig. 3), and Figs. 6(b) and
6(c) are for the case that the source is located near the
antenna termination (corresponding to Fig. 4). It is seen that
at the resonance corresponding to the M � 1 order QNM, the
residual field is comparable with the SPP field, so that the en-
hancement factor F of radiation predicted with the model de-
viates from the full-wave a-FMM data, while at the resonances
corresponding to other orders of QNMs, the residual field is
weak and the results predicted with the model are accurate.

APPENDIX B: QNM FIELD AND RADIATION
ENHANCEMENT OF NANOGAP ANTENNA
WITH LENGTH L � 0.2 μm
For the nanogap antenna with arm length L � 0.2 μm, only
M � 1 and N � 1 orders of QNMs need to be considered
within the frequency range of interest. Their complex

Fig. 5. SPP field and the residual field on the surface of the antenna
arms for different orders of QNMs. (a1) and (a2) correspond toM � 1
and M � 2 orders of bonding QNMs, respectively. (b1) and (b2)
correspond to N � 1 and N � 2 orders of antibonding QNMs, respec-
tively. The results are obtained for antenna length L � 0.6 μm.

Fig. 6. SPP field and the residual field on the surface of the antenna
arms at different resonance peaks of the enhancement factor F of ra-
diation plotted in Figs. 3(c) and 4(c). (a1) and (a2) show the results at
resonances corresponding to the M � 1 and M � 2 orders of QNMs
for the case that the source is located at the center of the nanogap [see
Fig. 3(c)]. (b1), (b2), (c1), and (c2) show the results at the resonances
corresponding to M � 1, 2 and N � 1, 2 orders of QNMs for the case
that the source is located near the antenna termination [see Fig. 4(c)].
The results are obtained for antenna length L � 0.6 μm.

300 Photon. Res. / Vol. 4, No. 6 / December 2016 Jia et al.



eigenfrequencies have been provided in Table 1. Here we
provide the field of the M � 1 and N � 1 orders of QNMs
for antenna length L � 0.2 μm. As shown in Fig. 7, the model
predictions (right column) agree well with the full-wave
a-FMM data (left column). For the bonding mode (M � 1),
the field is concentrated in the nanogap and at terminations
[Figs. 7(b1) and 7(b2)]. For the antibonding mode (N � 1), the
field is concentrated at terminations but is nearly null in the
nanogap [Figs. 7(d1) and 7(d2)]. The fields of the bonding
mode and antibonding mode possess different symmetries
[Figs. 7(a) and 7(c)]. These results are consistent with those
of QNMs for antenna length L � 0.6 μm (Fig. 2).

The frequency response of the enhancement factor F for
antenna length L � 0.2 μm is provided in Fig. 8. Figure 8(a)
corresponds to the case that the point emitter is located at
the center of the nanogap [as sketched in Fig. 3(a)], and
Fig. 8(b) corresponds to the case that the point emitter is lo-
cated near the antenna termination [as sketched in Fig. 4(a)].
It is seen that at the resonance peak corresponding to theM �
1 order QNM, the result obtained with the model (red curves)
deviates from the a-FMM result (blue circles), which is due to
the impact of the residual field other than SPPs. At the other
resonance peak corresponding to the N � 1 order QNM, the
enhancement factor predicted with the model is accurate.

APPENDIX C: ANALYTICAL EXPRESSION
OF MODE VOLUME OF QNMS
The mode volume is an important quantity used in the calcu-
lation of the Purcell factor of a resonator [57]. However, cal-
culation of the integral of the mode volume is a difficult task
since the field of QNM diverges at infinity. It was recently
shown that with the use of perfectly matched layers, the in-
tegral of the mode volume can be calculated in a rigorous
manner [20]. Here we will show that with the SPP model,
the mode volume can be expressed with the scattering coef-
ficients and the complex effective index of the SPP.

We first consider the case that the point emitter is located at
the gap center of the nanogap antenna, for which only the
bonding QNM is excited. With the formalism developed in
[20] based on the Lorentzian reciprocity theorem between a
point emitter and the QNM, the expansion coefficient ηM of
the excited field upon the basis of QNMs can be expressed as

ηM � ω∕ωc;M

ω − ωc;M

−iu · Ẽb�r0�R �Ẽb ·
∂�ωε�
∂ω Ẽb − H̃b ·

∂�ωμ�
∂ω H̃b�ω�ωc;M

d3r
; (C1)

where Ẽb and H̃b denote the electric- and magnetic-field vec-
tors of the bonding QNM, r0 is the position coordinate of the
electric point emitter, u is the unit vector along the polariza-
tion direction of the emitter (u � x in our calculation), ωc;M

denotes the eigenfrequency of the Mth order bonding QNM,
ω is the illumination frequency, and ε and μ are the dielectric
constant and magnetic permeability, respectively. For deriv-
ing Eq. (C1), the complex pole expansion theorem of
meromorphic functions is also applied (see Eq. (13) in [62] for
more details). On the other hand, another analytical expres-
sion of ηM has been given by Eq. (14) of the model. Comparing
the two equations, we obtain

Z �
Ẽb ·

∂�ωε�
∂ω

Ẽb − H̃b ·
∂�ωμ�
∂ω

H̃b

�
ω�ωc;M

d3r

� −iu · Ẽb�r0�
�βu�ω�ωc;M

�
−

4πiωneffL
c

�
1
ω
� 1

neff

∂neff

∂ω

�

−

1
r
∂r
∂ω

−

1
ρ� τ

∂�ρ� τ�
∂ω

�
ω�ωc;M

; (C2)

where neff is the complex effective index of the SPP. In [20], a
generalized complex-valued mode volume of QNM is
defined as

Vb �
R h

Ẽb ·
∂�ωε�
∂ω Ẽb − H̃b ·

∂�ωμ�
∂ω H̃b

i
ω�ωc;M

d3r

2ε0�u · Ẽb�r0��2
: (C3)

Inserting Eq. (C2) into Eq. (C3), we finally obtain the expres-
sion of the mode volume for the bonding QNM,

Vb �

h
−

4πiωneffL
c

�
1
ω � 1

neff

∂neff
∂ω

�
−

1
r
∂r
∂ω −

1
ρ�τ

∂�ρ�τ�
∂ω

i
ω�ωc;M

2iε0�βu�ω�ωc;M
�u · Ẽb�r0��

: (C4)

In Eq. (C4), the SPP excitation coefficient β [as sketched in
Fig. 9(a)] can be calculated with the Lorentzian reciprocity
theorem [36] between the emitter and the SPP mode. By con-
sidering a reciprocal scattering process of sending an incident

Fig. 8. Enhancement factor F of radiation plotted as a function of
illumination frequency ω∕�2πc� for antenna length L � 0.2 μm. The
results are obtained with the full-wave a-FMM (blue circles) and
the SPP model (red solid curves). (a) is for the case that the point
emitter is located at the gap center [as sketched in Fig. 3(a)].
(b) is for the case that the point emitter is located near the antenna
termination [as sketched in Fig. 4(a)].

Fig. 7. Field distributions of QNMs for antenna length L � 0.2 μm.
The left and right columns show the results obtained with the full-
wave a-FMM and with the SPP model, respectively. (a) and (b) show
the real part of Ex component and the amplitude of the electric field

(jEj �
���������������������������������������������
jExj2 � jEyj2 � jEzj2

q
) for the M � 1 order QNM. (c) and

(d) show the results for the N � 1 order QNM.
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SPP toward the nanogap [as sketched in Fig. 9(b)], β can be
expressed as

β � u · EG;tot
SPP;��r0�

hΨSPP;�jΨSPP;−i
: (C5)

In Eq. (C5), EG;tot
SPP;��r0� denotes the electric field at the source

position r0 excited by the incident SPP [as sketched in
Fig. 9(b)], and the inner product in the denominator is defined
as [36]

hΨSPP;�jΨSPP;−i �
Z �∞

−∞

Z �∞

−∞
�ESPP;−�x0; y; z� ×HSPP;��x0; y; z�

− ESPP;��x0; y; z� ×HSPP;−�x0; y; z�� · xdydz;
(C6)

where ESPP;� and HSPP;� are the electric and magnetic field
vectors of two counterpropagating SPPs, and the value of
the inner product is independent of the coordinate x0 of
the integral plane. As mentioned in Section 3, with the use
of the reciprocity relation of Eq. (C5), the excitation coeffi-
cient β for different emitter positions r0 and polarizations u
can be obtained with only one full-wave calculation of the
field EG;tot

SPP;��r0�. This virtue with the use of reciprocity is analo-
gous to that with the use of reciprocity between a point emit-
ter and QNMs [20]. With Eq. (D5) (in Appendix D), Ẽb�r0� in
Eq. (C4) can be further simplified as

Ẽb�r0� � 2urEG;tot
SPP;��r0�; (C7)

for which the symmetry of field at the central x-plane of the
nanogap is used.

Next we consider the case that the source is located
near the antenna termination. Now both the bonding and

the antibonding QNMs will be excited. For the bonding
QNM, similar to the derivation of Eq. (C4) and with the use of
Eq. (20a) of the model, the mode volume can be expressed as

Vb �

h
−

4πiωneffL
c
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i
ω�ωc;M

2iε0�α∕2r�ω�ωc;M
�u · Ẽb�r0��

: (C8)

Similar to Eq. (C5) for β, by considering the reciprocal process
of sending an incident SPP toward the antenna termination [as
sketched in Fig. 9(d)], the SPP excitation coefficient α can be
expressed as

α � u · ER;tot
SPP;��r0�

hΨ�
SPPjΨ−

SPPi
; (C9)

where ER;tot
SPP;��r0� is the electric field at the source position r0

excited by sending a right-going SPP for a semi-infinitely long
antenna [see Fig. 9(d)]. With the use of Eq. (D11) in the next
section, the QNM field Ẽb�r0� at the source position (near the
antenna termination) in Eq. (C9) can be simplified as

Ẽb�r0� � ER;tot
SPP;��r0�: (C10)

For the antibonding QNM, the mode volume can be
expressed as

Va �

h
4πiωneffL

c

�
1
ω � 1

neff

∂neff
∂ω

�
� 1

r
∂r
∂ω � 1

ρ−τ
∂�ρ−τ�
∂ω

i
ω�ωc;M

2iε0�α∕2r�ω�ωc;M
�u · Ẽa�r0��

: (C11)

In Eq. (C11), the QNM field Ẽa�r0� at the source position r0 can
be simplified as

Ẽa�r0� � −ER;tot
SPP;��r0�; (C12)

for which Eq. (D12) in the next section is used.

APPENDIX D: SIMPLIFIED EXPRESSION OF
QNM FIELD IN THE NANOGAP AND NEAR
THE ANTENNA TERMINATION
The field of QNM expressed with Eq. (4) in Section 2 can be
simplified in the horizontal region of the nanogap or away
from the antenna termination. We first consider the horizontal
region of the nanogap. For the third term in Eq. (4a) that ex-
presses the bonding QNM, the field scattered by the nanogap
can be expressed as

urΨG;s
SPP;� � ur�ΨG;tot

SPP;� −ΨG;inc
SPP;��; (D1)

whereΨG;tot
SPP;� is the total field excited by sending a right-going

SPP from the left arm of an infinitely long nanowire with a
nanogap [as sketched in Fig. 10(a)], and ΨG;inc

SPP;� is the incident
SPP field in the absence of the nanogap [Fig. 10(b)]. For the
first term in Eq. (4a) and within the horizontal region of the
nanogap, the field scattered by the left termination for an
incident left-going SPP can be expressed as

ΨL;s
SPP;− � ΨL;tot

SPP;− −ΨL;inc
SPP;− � urΨG;inc

SPP;�; (D2)

Fig. 9. Calculation of the SPP excitation coefficients β and αwith the
Lorentzian reciprocity theorem. (a) and (c) Definitions of the SPP ex-
citation coefficients for the point emitter located in the nanogap and
near the antenna termination, respectively. (b) and (d) Reciprocal
scattering processes of (a) and (c) by sending an incident SPP toward
the nanogap and toward the antenna termination, respectively.
EG;tot
SPP;��r0� and ER;tot

SPP;��r0� in (b) and (d) denote the electric field
at the source position r0 excited by the incident SPP.
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where ΨL;tot
SPP;− is the total field excited by sending a left-going

SPP at a left-terminated semi-infinitely long nanowire [as
sketched in Fig. 10(g)], and ΨL;inc

SPP;− is the incident SPP field
at an infinitely long nanowire [Fig. 10(h)]. Equation (D2) is
obtained in view that within the horizontal region of the nano-
gap, the scattered field is simply the reflected right-going SPP
[multiplied by a phase shift u � exp�ik0;cneffL� and the SPP
reflection coefficient r], as illustrated in Figs. 10(g) and 10(h).
With Eqs. (D1) and (D2), we obtain

ΨL;s
SPP;− � urΨG;s

SPP;� � urΨG;tot
SPP;�: (D3)

Similarly, for the summation of the second and the last terms
in Eq. (4a), we have

ΨR;s
SPP;� � urΨG;s

SPP;− � urΨG;tot
SPP;−: (D4)

With Eqs. (D3) and (D4) inserted into Eq. (4a), we finally
obtain

Ψb
QNM � ur�ΨG;tot

SPP;� �ΨG;tot
SPP;−�; (D5)

which is valid within the horizontal region of the nanogap. In a
parallel way, within the horizontal region of the nanogap,
Eq. (4b), which expresses the antibonding QNM, can be
simplified as

Ψa
QNM � ur�ΨG;tot

SPP;� −ΨG;tot
SPP;−�: (D6)

Next we consider the horizontal region on the right side of the
right termination of the nanogap antenna. For the bonding
QNM, the second term in Eq. (4a) is expressed as

ΨR;s
SPP;� � ΨR;tot

SPP;� −ΨR;inc
SPP;�; (D7)

whereΨR;tot
SPP;� is the total field excited by sending a right-going

SPP at a right-terminated semi-infinitely long nanowire [as
sketched in Fig. 10(c)], and ΨR;inc

SPP;� is the incident SPP field
at an infinitely long nanowire [Fig. 10(d)]. The first term in
Eq. (4a) can be simplified as

ΨL;s
SPP;− � ΨL;tot

SPP;− −ΨL;inc
SPP;− � u2vrΨR;inc

SPP;�; (D8)

which is obtained in view thatwithin the considered region, the
scattered field is simply the reflected right-going SPP [multi-
plied by the SPP reflection coefficient r and a phase shift
u2v with v � exp�ik0;cneffw�], as illustrated in Figs. 10(g)
and 10(h). The third term in Eq. (4a) can be simplified as

urΨG;s
SPP;� � ur�ΨG;tot

SPP;� −ΨG;inc
SPP;�� � ur�uτ − uv�ΨR;inc

SPP;�: (D9)

The second equality of Eq. (D9) is obtained by usingΨG;tot
SPP;� �

uτΨR;inc
SPP;� and ΨG;inc

SPP;� � uvΨR;inc
SPP;�. Within the considered re-

gion,ΨG;tot
SPP;� � uτΨR;inc

SPP;� can be understood in view that the to-
tal field is simply the transmitted right-going SPP [multiplied by
a phase shift u and the SPP transmission coefficient τ], as illus-

trated in Fig. 10(a).ΨG;inc
SPP;� � uvΨR;inc

SPP;� is obtained in view that

ΨG;inc
SPP;� is simply the SPP fieldΨR;inc

SPP;� at an infinitely long nano-
wire with a phase shift uv, as sketched in Figs. 10(b) and 10(d).
The last term in Eq. (4a) can be simplified as

urΨG;s
SPP;− � ur�ΨG;tot

SPP;− −ΨG;inc
SPP;−� � ur�uρΨR;inc

SPP;��; (D10)

where ΨG;tot
SPP;− is the total field excited by sending a left-going

SPP from the right arm of an infinitely long nanowire with a

nanogap [as sketched in Fig. 10(e)], and ΨG;inc
SPP;− is the incident

SPP field in the absence of the nanogap [Fig. 10(f)]. The second
equality of Eq. (D10) can be understood in view of Figs. 10(e)
and 10(f) (with ρ denoting the SPP reflection coefficient at the
nanogap).With Eqs. (D7)–(D10) inserted into Eq. (4a) andwith
the use of Eq. (3a), we finally obtain,

Ψb
QNM � ΨR;tot

SPP;�: (D11)

Similarly, for the antibonding QNM, Eq. (4b) within the consid-
ered region can be simplified as

Ψa
QNM � −ΨR;tot

SPP;�: (D12)

Finally, we consider the horizontal region on the left side
of the left termination of the nanogap antenna. Following
the procedures for deriving Eqs. (D11) and (D12), we have

Fig. 10. (a) Total field ΨG;tot
SPP;� excited by a right-going SPP incident

from the left arm of an infinitely long nanowire with a nanogap.
(b) Incident right-going SPP field ΨG;inc

SPP;� in the absence of the scat-

terer of the nanogap. (c) Total field ΨR;tot
SPP;� excited by a right-going

SPP at a right-terminated semi-infinitely long nanowire. (d) Incident
right-going SPP fieldΨR;inc

SPP;� at an infinitely long nanowire. (e)–(h) The
same as (a)–(d) but for a left-going incident SPP.
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Ψb
QNM � ΨL;tot

SPP;−; (D13)

Ψa
QNM � ΨL;tot

SPP;−: (D14)
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